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LAW OF VAPOR-BUBBLE GROWTH IN A TUBE IN 
THE REGION OF LOW PRESSURES 

Yu. B. Zudin UDC 532.623:532.11 

Using an analog of a Rayleigh equation the limiting law of vapor-bubble growth in a tube in coolant boiling 
in the region of very low pressures is obtained. 

The problem of the growth of a vapor slug in coolant boiling in a heated tube was investigated in [1-4 ]. 

As is known [5 ] the process of bubble boiling in the low-pressure region is characterized by low surface density of 

nucleation sites. Therefore when describing the initial step of the process of boiling we can consider, to a good 

approximation, the problem of the growth of a spherical vapor bubble on a certain segment of the tube length. The 

corresponding conjugation conditions [4 ] should be specified at the boundaries of these neighboring segments. In 

the limiting case of "very low pressure," the problem of vapor-bubble growth in a single tube with a specified 

constant pressure at both its outlets (i.e., at the boundaries of the segment) can be considered. As a consequence 

of the high rates of bubble growth that are characteristic of boiling in the low-pressure region, viscous and 

gravitational effects will be negligibly small as compared to inertial ones [5 ]. As is known [6] the dynamics of a 

spherical vapor bubble in an unbounded volume of liquid is described by the classical Rayleigh equation: 

AP 3 R 2  p - 2 + R J~. (1) 

For the problem of bubble growth in a sufficiently long tube (L/Ro >> 1), the Rayleigh equation becomes 

unacceptable. In [7 ], its corresponding analog 

~a, R1. 
= 2  _ - - ~ - ( 2 k 2 + R R )  

P Ro 

(2) 

is derived for this case. Here R is the bubble radius;/~ - dR/dt;  "R - d2R/dt2; t is the time; p is the liquid density; 

AP = P - Poo > 0 is the pressure difference; P, P~o are the pressures in the bubble and in nominal "cross-sections 

of the outlet" from the tube, respectively; Ro is the tube radius;/ ,  is the characteristic length, which is defined by 

the distances Ii and/2 ,  i.e., the "coordinates of the distance" of the nucleate site under study from the nominal 
"outlets" from the tube: 

1112 (3) 
1, = ii + 12. 

A theoretical analysis of the process of vapor-bubble growth in an unbounded volume of liquid as applied 

to the region of very low pressures is performed in [81. The model of [8 ] involves the Rayleigh equation, an energy 

equation for the liquid around the bubble, an approximation of the portion of the saturation curve for the low- 

pressure region, as well as detailed evaluations of the assumptions made in the analysis. As a result, in [8 ], the 

following "limiting" law of bubble growth was obtained: 

R= IW' / p r) 
(4) 
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Fig. 1. Relationship of the differences of pressures and temperatures along 
saturation curve. 

Here ,l' and c~ are the thermal conductivity and specific heat of the liquid~ respectively; T s = Ts(P**) is the saturation 

temperature for the pressure in the liquid at infinity; r, the specific heat of the phase transition; Ps, the vapor 

density at the saturation temperature Ts; F = ( R T s / r )  = 0.1 is the "Trouton parameter"; R is the individual gas 
constant; fll - 1. 

Our work seeks to generalize the analysis of [8 ] to the case of vapor-bubble growth in a sufficiently long 

tube I . / R o  >> 1. The entire course of the reasoning of [8 ] is completely borrowed but, instead of Rayleigh equation 

(1), its analog, i.e., Eq. (2), is used. In what follows the basic points of the analysis [8 ] are briefly represented. 

1. The approximation of the saturation curve in the region of low pressures: 

h P  - - -  
(5) 

Here A T  = T** - Ts(P**); T|  is the temperature of the superheated liquid at infinity (in the case under study, at 

the boundaries of the tube); Ts is the saturation temperature for the boundary pressure Pop. 

2. The heat-flux density qR at the boundary of the vapor bubble: 

qR = AT 1 , (6) 

where AT1 = T| - 7" is the "liquid at infinity - vapor in the bubble" temperature difference; T" = Ts(P") is the 

temperature of the saturated vapor in the bubble, which varies with time as a consequence of the change in the 

vapor pressure along the saturation curve in bubble growth. 

3. The relationship of the temperature differences AT, AT1, and ATs: 

A T + A T  1 = A T  s. (7) 

Here AT is the temperature difference reckoned along the saturation curve; ATI is the working temperature 

difference, which enters energy equation (6); A T  s = Too - Ts(P) is the total temperature difference (Fig. 1). 

4. The heat balance equation for a spherical bubble: 

qR = r p ' k .  (8) 

The use of relations (4)-(8) simultaneously with Rayleigh-equation analog (2) leads to the following "limiting" law 

of bubble growth in a tube: 
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I cj2t' I t3/5.  
1 / 5  

R = t2  ~Psrl, ) (TsRo) 2/s (9) 

Here ~2 = 0.1 with allowance made for the Trouton rule: r = lOFTs. 

The use of relation (9) for the time of bubble filling of the entire cross-section of the tube (t -- to; R = R o )  

permits calculation of the velocity of the bubble boundary R0 and the "bubble - tube boundary" pressure difference 

~P0 at the end of the initial step of boiling, i.e., the generation and growth of a spherical vapor bubble: 

R0 = 1.3-!0-2U; (10) 

AP o = 6.7.10 -4 (I. /Ro) p 'U 2 . (11) 

Here U is the velocity scale, which is determined in the following manner: 

U -  

Expressions (11) and (12) can be used as initial conditions to calculate the next step of liquid boiling in a 

tube in the region of very low pressures - the problem of vapor-slug formation and growth [41. The applicability 

limits for the above law of the growth of a vapor bubble in a tube are governed by the realization conditions of [8 ] 

for the "limiting" computational scheme: 
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N O T A T I O N  

R, bubble radius; R = dR/dt ;  i? ~-d2R/dR2; t, time;p, liquid density; ,~, thermal conductivity of the liquid; 

ct~, specific heat of the liquid; AP = P" - P| pressure difference; P', pressure in the bubble; P,o, pressure at the 

outlets from the tube; R0, tube radius; Ii, 12, distances from the boiling center to the outlets from the tube; l. = 

lll2/(ll  + 12), characteristic length; T s - Ts(Poo), saturation temperature for the pressure in the liquid at infinity; 

r, specific heat of the phase transition; Ps, vapor density that is taken at the saturation temperature Ts; 

F - (RTs/r)  --- 0.1, "Trouton parameter"; R, individual gas constant; AT = Too - Ts(Poo), temperature difference 

reckoned along the saturation curve; Too, temperature of the superheated liquid at the outlets from the tube; qR, 

heat-flux density at the boundary of the vapor bubble; AT1 = Too - T', "liquid at infinity - vapor in bubble" 

temperature difference; 7" = Ts(P'), temperature of the saturated vapor in the bubble; ATs = Too - Ts(P), total 

temperature difference; U, velocity scale. Superscripts: " conditions in the vapor phase; ~ ", first and second 

derivatives with respect to time, respectively. Subscripts: 0, conditions on the tube wall; oo, conditions at the outlet 

from the tube; s, saturation conditions; R, conditions at the boundary of the vapor bubble. 
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